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We investigate the stability of the one-dimensional solitary waves solutions of the 
equations proposed by McKenzie to model the ascent of melts in the Earth interior. 
We show that for small porosity and two-dimensional horizontal disturbances with 
long wavelength, these solitary waves are unstable. We also exhibit two- and three- 
dimensional solitary-wave solutions of the McKenzie equations. 

1. Introduction 
This paper deals with certain questions which stem from the study of a 

mathematical model of magma flow in the Earth’s mantle. 
The mathematical model referred to is that due to McKenzie (1984). Building on 

earlier work by Walker, Stolper & Hays (1978), Ahern & Turcotte (1979) and others, 
McKenzie proposed a set of equations governing the motion of very slow, very 
viscous fluids through deformable rocks, i.e. flows relevant to many geological 
phenomena. 

Without going into too many details, the model treats the flow of the melt through 
the crust essentially as a flow through a porous medium. In particular, a Darcy law 
is used to relate the velocity of the melt to the pressure gradient. However, the model 
differs from the standard porous media flows in that the pressure gradient in the melt 
is partly due to the deformation and compaction of the solid matrix. Thus, the 
medium traversed by the melt is not static, but rather fluid and solid matrix are 
dynamically coupled. To simplify the description of this interaction, McKenzie treats 
the solid matrix as a fluid with finite bulk viscosity to allow for compaction effects. 
The framework of two-phase fluid flows can then be used to write the dynamical 
equations. The reader is referred to the original paper for a complete discussion of the 
assumptions entering in the model, We should also mention that Scott, Stevenson & 
Whitehead (1986), Olson & Christensen (1986) and Whitehead (1987) have recently 
discussed dynamical analogs of these equations as well as laboratory experiments 
which are very illuminating. 

In  the study of the migration of melts, several authors (e.g. Richter & McKenzie 
1984; Scott & Stevenson 1984; Barcilon & Richter 1986) found that a horizontal 
‘slab ’ of excess melt with a very specific vertical profile can rise under the action of 
buoyancy without changing shape over large distances. Said differently, McKenzie’s 
equations admit finite amplitude, one-dimensional solitary-wave solutions. As is 
typical of all finite-amplitude waves, the speed of propagation of these waves is 
related to  their maximum amplitudes. Thus, a small horizontal amplitude variation 
will cause a certain part of the wave to rise faster than the other. This could lead to 
the break-up of the wave. Such an instability has been observed in numerical 
calculations carried out by Scott & Stevenson (1986) as well as S. Daly & F. M. 
Richter (private communication). 
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In the present paper, we study the stability of the one-dimensional solitary waves 
analytically. More specifically, we consider the stability of these waves to two- 
dimensional disturbances with long horizontal wavelengths in the limit of small 
voidage (porosity). Both of these restrictions are due purely to technical reasons. The 
first allows us to use the modulation approach used, for example, by Kadomtsev & 
Petviashvili (1970) in their study of the stability of the solitary-wave solution of the 
Kortcveg-de Vries equation. The second restriction enables us to simplify greatly the 
original McKenzie equations and is of interest in its own right. 

Sincc the one-dimensional waves are unstable, the question naturally arises as to 
whether there are stable two- and three-dimensional ones. We investigate this 
question and exhibit such higher-dimension solitary waves. We also compare their 
properties with the one-dimensional ones. 

2. The small voidage approximation 
The equations proposed by McKenzie in 1984 are: 

$ t + v . $ u  = 0 ,  (2.1) 

- $ t + V -  (1-$) V =  0 ,  ( 2 . 2 )  

$ ( v -  V)+,K'KVP = 0,  (2.3) 

(2.4) - - a ( V x V x  V ) + ( q + i a ) V ( V .  V ) - V P - d g ( l - $ ) k  = 0. 

In  these equations, v and V denote the velocity of the melt and solid matrix 
respectively ; P is the dynamical part of the fluid pressure and is related to the total 
pressure p as follows 

p = P+P,9Z, 

where g is the gravitational acceleration, and pr is the density of the melt; q5 is the 
voidage, or more correctly the volumetric fraction of melt ; k represents a unit vector 
in the vertical which is the z-direction; a and 7 are related to the bulk and shear 
viscosities a* and q* of the non-Stokesian fluid, which models the solid matrix, thus 

p is the viscosity of the melt ; A is the difference between the solid and fluid densities, 
which are assumed to be constant. Finally, K is the permeability, which on the basis 
of laboratory data is assumed to obey the power law 

K = (2 .5 )  

Clearly, (2.1) and (2.2) represent the conservation of mass of the melt and of the 
solid phases. Equation (2.3) is akin to  Darcy's law, except that  the pressure gradient 
is proportional to  the velocity of the melt relative to the deformable matrix. Finally, 
(2.4) shows that the solid matrix deformations are treated as if they stemmed from 
the motion of a slow, viscous flow of fluid. McKenzie's (1984) paper discusses the 
assumptions which are inherent in these equations. We shall accept these equations 



Solitary waves in magma dynamics 123 

K = KOq5’3, 

x = &-1Ko(?/ ++)}kd, 
t = (b0 dg{,u(v +Q)/K0>%, 

(v ,  v) = p-lKOAg(v’, V), I 

where 

Next, we restrict our attention to  the case in which the background voidage q50 is 
small, and look for solutions as power series in q50 of the following form: 

(2.11) 

Note the difference in the magnitudes of the melt and matrix velocities. Substituting 
(2.1 1) into (2.7)-(2.10) and dropping the zero superscripts, we obtain the following 
set of equations for the leading-order fields : 

( b t + V .  (bv = 0, (2.12) 

- (&+V. v = o ,  (2.13) 

(b-20 + V P  = 0, (2.14) 

{ V ( V *  V ) - P ( V X V X  V ) } - V P - k = O .  (2.15) 

These simpler equations are the ones that we shall use henceforth. As a matter of 
fact, for infinite media, these equations can be simplified still further. Indeed, by 
taking the curl of (2.15) we see that 

vxvxvxv=o,  (2.16) 

or if we use, without loss of generality, Cartesian coordinates 

vyv x v) = 0. (2.17) 

Thus, each component of the curl of the matrix velocity is, to zeroth order, a 

5 FLM 20.4 
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harmonic function. Therefore, for those cases where the domain is infinite and the 
motion confined, then V x V tends to zero a t  infinity, and as a result V x V = 0 
everywhere. Physically, this means that rotational deformations of the matrix are 
either due to boundary effects or they are higher-order effects in q50. These 
assumptions hold in the present study of solitary waves. Whenever they do, the 

(2.18) equations reduce to : q5t+v.q5u = 0, 

p u +  V P  = 0, (2.20) 

V(V* V)-VP-k = 0, (2.21) 

v x v = o .  (2.22) 

-$&+V. v =  0, (2.19) 

If we were to eliminate P, v and V from these equations, we would obtain a single 
nonlinear evolution equation for $ : 

(2.23) 

For the one-dimensional case, this equation reduces to the one considered by 
Barcilon & Richter (1986). Incidentally, we note in passing that the conservation 
laws obtained in that paper for the one-dimensional case, can be trivially generalized 

(2.24) 

as follows 

q53V2q5, + 3q52vq5 v$t - $bt - 3q5*q5z = 0. 

I q) = q5-1, 

Xo = q53(Vq5t-k)l 

and 
(2.25) 

a% -+v-x, = 0, 
at 

Indeed, one can check that 

for i = 1,2  are identically satisfied if $ is a solution of (2.23). 

3. Stability of one-dimensional solitary waves 
The numerical work of Scott & Stevenson (1986) as well as that of S. Daly & 

F. M. Richter (unpublished work) shows clearly that the one-dimensional solitary 
waves are unstable. These early reports have prompted us to examine this question 
analytically. In view of the difficulties associated with such an analysis, we have 
restricted our attention to perturbations which (i) are two-dimensional and (ii) have 
long wavelengths in the horizontal direction. The ratio of the characteristic 
lengthscales in the vertical and horizontal directions is therefore a small parameter, 
say, E ,  which we exploit to make progress. 

A brief summary of the results from the one-dimensional case will prove useful. 
The one-dimensional solitary waves are solutions of the evolution equation (2.23) for 
the voidage which depends on space and time solely through the variable 

Therefore, if F denotes the characteristic shape of these waves, then 

with 

6 = z-Ct. (3.1) 

F3Fccc+3F2FcFcc-Fc+((3/~)F2Fg = 0, (3.2) 

F+1 as[++oo. (3.3) 
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The solution to this nonlinear differential equation is given implicitly by 

where A ,  which is always greater than 1, stands for the amplitude of the wave at the 
origin of the moving coordinate frame. Equation (3.4) shows that F is a function of 
two variables, namely 5 and A .  The all-important relation between phase speed and 
amplitude is obtained by considering the second integral of (3.3)-(3.4), 

( F -  1)' 
CF2 

F i  = ___ (c  - 1 - 2F),  (3.5) 

and evaluating it a t  the origin. It implies that :  

c=2A+1. (3.6) 
Therefore, we can equally well look upon F as a function of [ and c and write (3.4) 

(3.7) 
as F = F(5,  c). 

In studying the stability of these one-dimensional waves, we shall not follow the 
traditional procedure which consists in examining the evolution of an infinitesimal 
two-dimensional perturbation. Rather, we shall adopt an approach akin to  that used 
by Kadomtsev & Petviashvili (1970) in their study of the stability of solitary waves 
associated with the Korteweg-de Vries equation. Essentially, this approach consists 
of looking for two-dimensional solutions of (2.23) which are, so to speak, 'near' the 
one-dimensional solitary-wave solution. To that effect we try the Ansatz 

$ = $(r, y ,  T, 4, (3-8) 

I where 7 = Z-O/€, 

Y = E Y ,  

T = st, 
(3.9) 

The variables Y and T represent slow spatial and temporal variables : Y is used to 
introduce a long horizontal wavelength modulation; T is used to  follow the slow 
evolutions of the small departures from the one-dimensional wave. The justification 
for this slow time variable will appear in our subsequent analysis. The coordinate 7 
is reminiscent of 5, except that  0 is now a function of the slow variables. We therefore 
allow different parts of the wave to travel a t  different speeds. Because of the 
smallness of E ,  we represent this unknown phase function as asymptotic series of the 
form 

Similarly, $ is expanded as 

8( Y ,  T ,  E )  = 8 ( O ) (  Y ,  2') + EW)( Y ,  T) + . . . . (3.10) 

$(7, Y ,  T ,  B )  = $(O)(7,  Y ,  T )  + E$(')(T/,  Y, T) +. . . . (3.11) 

Before we proceed with the stability analysis, we should warn the reader that 
strictly speaking there are no solutions 'nearby ' a solitary wave of the form (3.8). Or 
rather, 'nearby ' solutions are of this form only for 171 < E - ~ .  We shall return to  this 
point later. 

The zeroth-order approximation of (2.23) now reads 

@$){(I + ( ~ ~ ~ ) ~ ) ( ~ ~ 0 ~ 3 ~ ~ ~ ~ + 3 ~ ~ o ~ ~ ~ ~ ~ ~ r 1 ; 0 , ' ) - ~ ~ ) } + 3 ~ ( 0 ) 2  $,/ (0) - - 0 . (3.12) 
5-2 
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We can now be more precise about what we meant by looking for a nearby solution. 
We want the zeroth-order approximation to be identical to the one-dimensional 
solitary wave. We therefore require that 

OP) = 0 .  (3.13) 

In fact, let us redefine the phase function and write 

8,  = C ( O ) ( T )  + €eT, ( 3 . 1 4 ~ )  

where 

(3.14 b )  

(3.15) 

Equation (3.12) is now identical to (3 .2)  for F .  As a result 

p ( 7 ,  Y ,  T) = F(7,  c'O'(T)). (3.16) 

Before turning our attention to the first-order correction to the evolution 
equation, we should note that : 

(3.17) 

9 z  = $7, 

9t = - C ' o ' $ ~ + E ( @ T - 6 T  @ B ) ,  

9 g  9 g t  = - E2C(0)(Pr,Y - e Y  @7B) W Y  - 8,  $ B )  + 0 ( E 3 ) ,  
9 ggt = -  E2c(o){(eY)2@BBB - 28, &BY - OYY &, + $?)YYI+ W3). 

As a result, the first-order equation is 

where 

(3.18) 

(3.19) 

The solution $(l) should also satisfy the following conditions at infinity 

@ l ) + O  asy+ +m. (3.20) 

Note that the effects of the horizontal variation are not yet felt. At  this order, the 
stability analysis is therefore similar to that of a one-dimensional solitary wave 
perturbed by a one-dimensional disturbance. This is another simplification due to the 
choice of long wavelength disturbances. 

The problem (3.18)-(3.20) for $(l) is very similar to one studied by Kodama & 
Ablowitz (1981). They were interested in the slow evolution of solitons of the 
Korteweg-de Vries equation (KdV), the modified KdV equation, the nonlinear 
Schrodinger equation, etc. as they travel through a slightly inhomogeneous media. 
Their analysis, as well as that of others (Kaup & Newell 1978; Johnson 1973; 
Knickerbocker & Newell 1980), shows that the solution is not uniformly valid in 9 .  
We shall have to keep this in mind as we proceed with the determination of do), O ( O ) ,  

etc. by means of the Fredholm alternative (see e.g. Friedman 1956, p. 45). To that 
effect, we find all the solutions of 

L*f = 0 ,  (3.21) 

where (3.22) 
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is the adjoint of L .  From the very definition of L*, these solutionsf must be bounded 
and tend to the same value at  both plus and minus infinity. Clearly, fl = 1 is one such 
solution. Therefore, if we integrate (3.18) over q from - 00 to + m, we are left after 
a little algebra with : 

(3.23) 
a 

aT - ( F - 1 )  = 0 ,  

where ( ) = r m d q .  

In the Appendix we derive an expression for the first ' conserved density ' ( F  - 1) and 
-m 

show that (F-1) = $(c-3)4 

where c stands for do). Therefore (3.23) implies that 

--- - 0. 
w) 
aT (3.24) 

A consideration of a second linearly independent solution of the adjoint operator, 
namely f, = F2, would lead to the requirement that (F,2+F-l- l),  i.e. the second 
' conserved density ', be independent of T .  This condition is automatically satisfied if 
(3.24) holds. Finally, the third independent solution of (3.21) is unbounded and hence 
need not be considered. 

Thus to leading order, the phase speed of the perturbed solitary wave is the same 
constant as in the strict one-dimensional case. 

We return to (3.18) which we now write thus: 

(3.25) 

The most general bounded solution of (3.25) is 

p i )  = D F ~ + B ~ F , .  (3.26) 

Here, D is a function of Y and T multiplying the solution of the homogeneous part 
of the equation. That @)FC is a particular solution of (3.26) can be seen by 
differentiating (3 .2)  with respect to c.  

The form of #(l) is similar to the order e correction of a true one-dimensional wave 
with speed do) + EP. Indeed, 

F ( Z - ( C ( ~ ) + € C ( ' ) )  t ,  C ( ~ ) + E C ' " )  = P ( ~ , c ~ ~ ) ) + ~ ( - ~ " ~ ~ ~ + c " ' F , ) + O ( ~ ~ ) ,  (3.27) 

where 5 now stands for z -d0 ) t .  This similarity between the above e correction and 
~ ( l )  is due to the fact that the horizontal variations are not felt to this order, a fact 
already alluded to. Incidentally, (3.27) also shows that the series for the one- 
dimensional wave will become disordered after a long time t = O(6-l). This is the 
promised justification for introducing T in our analysis. Also, because we have 
introduced the coordinate q containing the variable phase O( Y ,  T ,  e )  to eliminate the 
possibility of such a disorder, we can eliminate the homogeneous solution Fq of (3.25) 
by setting 

D = 0. (3.28) 

Consequently : = ,gco)F T c' (3.29) 
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The second-order equation, which involves the horizontal variations for the first 
time, reads: 

3 L$'" = C~( ,O&[F~F~~,~,  +3F2FqF,,-F,]+-O(')F2Fq c(o) T 

- c ~ ~ ~ ( ( ~ ~ ~ ) ~ ( F ~ F , , , ,  + 3F2F, FVv) +t@?)2LFcc + +do)@?? F3F,,. (3.30) 

In arriving a t  this equation, we have used the fact that 

to write various combinations of terms in the right-hand side in a compact form. 
Once again we appeal to the Fredholm alternative to determine the unknown phase. 
Multiplying byj', = 1 and integrating over q ,  we see that:  

(3.31) 
a 

TT ac 
0 = - (ew - ( F -  1) - 3 p ( e ( o )  Y Y  ( F ~ F ; ) .  

Had we used f2  = F-*, we would have found that 

(3.32) 

Since these two equations for (e0 are incompatible, we have reached the conclusion 
that t,here are no 'nearby' solutions of the form (3 .8) .  This conclusion is not 
surprising in the light of the work by Johnson (1973),  Kaup & Newel1 (1978),  
Kodama & Ablowitz (1981) and others already alluded to. Indeed, these authors 
have shown that as solitons for the Korteweg-de Vries equation (KdV), the modified 
KdV equation, the nonlinear Schrodinger equation, etc. travel through slightly 
inhomogeneous media, they evolve into waves which are no longer invariant in a 
moving frame. In particular, far from the humps, i.e. in the far field, fore and aft 
asymmetries occur. 

In order to avoid an analysis of the far field, we shall assume that the instability 
develops in the vicinity of the hump. We compensate for the fact that  our Ansatz is 
not valid in the far field by using that solution of the adjoint problem which tends 
to zero a t  infinity, viz. 

The desired evolution equation is 
(3.33) f 3  = l-F-2. 

o = egk- + c ( o ) e ' , o ~ ( ( 3 ~ 2 - i ) ~ ; ) .  (3.34) 
aC " (  F 

The computations carried out in the Appendix show that the coefficient of @& is 
positive. Since that of Sc,Ob is obviously also positive, the above equations admit 
exponentially growing solutions. Hence both the E correction to the speed and 
amplitude grow exponentially over the slow timescale. 

This analysis proves that one-dimensional solitary waves are unstable to horizontal 
perturbations. 

4. Multidimensional solitary waves 
We are not able to follow the evolution of the unstable one-dimensional waves to 

their final form as two- or three-dimensional entities. Instead, we start ab initio to 
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look for two- and three-dimensional waves propagating in the z-direction without 
changing shape. For this purpose, we introduce once again a frame of reference 
moving with the wave and recall that 

5 = z-ct .  

By definition, in this moving frame the form of the waves are 'permanent ' and hence 
the governing equation is time independent. Therefore, (2.23) becomes : 

(4.1) -c43v=4,- 3c42v4 * V$,+ c4,-  3424( = 0, 

where a a a  
ax ay a[- V = i -+ j -+k-  

We look for solutions of (4 .2 )  such that 

4 - 19 IV4L IV4,I +(R). (4 .3 )  
We also restrict ourselves to positive solutions. Aside from the fact that a negative 
porosity is meaningless physically, solutions of (4.1) in which 4 vanishes on a surface 
present problems. Indeed, for these solutions all the derivatives of # also vanish on 
that surface and, as is typical of cases where there is no Lipschitz continuity, the 
solution is not unique. In particular, the solutions on either sides of the surface 
decouple. For all these reasons, we shall assume that 

4 > 0. (4.4) 
Under those conditions, we can prove a general result about the sign of the speed of 
the solitary waves, namely we can show that they must propagate upward. Since 
these waves are excess melt waves, they represent regions that are more buoyant 
than their surroundings : in that sense this result is hardly surprising. 

THEOREM 1. If a solution of (4.1)-(4-4) exists, then c 2 0. 
Proof. We multiply (4.1) by q5c and integrate over R 

and after an integration by parts 

c = - ,  (4.5) 

which, on accounf, of (4.4), shows that c is positive. 

11#11, = SUP141, 

c G 311411;. 

If we define 
R 

then clearly (4.5) implies that 
Consequently, if c 2 3 ,  then the voidage must exceed 1 somewhere in the medium. 
We shall show that for axially and spherically symmetric waves, the voidage is in 
fact everywhere greater than 1 for these values of c. That this is not true for c < 3 
can be seen from the far-field behaviour of 4. To that effect, we replace 4 by 1 in (4.1) 
to get an equation for the leading-order term in a far-field approximation, say 0: 

- cV2@,+(c -3 )@,=  0. (4.6) 
In two and three dimensions, 4 oscillates in the far field about 1 whenever G is smaller 
than 3. For this range of phase speeds, the decay of #- 1 is not sufficient to ensure 
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integrability of conserved quantities (2.24)-(2.25). As such, c < 3 is not a physically 
meaningful range for solitary waves. Thus, in view of (4.3), we restrict our attention 
to values of c greater than 3. 

We next consider isotropic two- and three-dimensional waves, namely waves for 
which the voidage is solely a function of the single variable x2 + 
respectively. If we define 

then (4.1)-(4.3) becomes 

and x2  + y 2  + 
(4.7) p2 = x2+p ,  

Similarly, for the three-dimensional case we define without possible confusion 

p 2 = x 2 + y 2 + c .  
The problem now becomes 

(4.10) 

(4.1 1) 

with 4-'7 $p* $ p p E L 2 ( 0 7  (4.12) 

These two problems corresponding to cylindrical and spherical domains of excess 
melt rising through the solid matrix are so similar mathematically that we shall deal 
only with one of them, namely (4.8)-(4.9). All the results obtained for the cylindrical 
wave can easily be generalized to the spherical one. 

A first and second integral of (4.8) will be needed in the sequel. A straightforward 
integration yields 

(4.13) 43( $PP +A+,)+ 3 Jpm $0~4: dr  = - C (1 -$3) - (1 -4). 

If we multiply (4.13) by $07 divide by 4' and integrate we get after interchanging two 

1 

P 

(4.14) 

Another useful integral is obtained by dividing (4.8) by $2 and integrating, namely : 

(4.15) 

We are now able to prove that the two-dimensional wave has the familiar one-hump 

THEOREM 2. For c 2 3, if the solution of (4.1)-(4.3) exists, then $ 2 1.  
Proof. Let us assume that 4 can be smaller than 1.  Then $ has a t  least one 

shape. We first establish 

minimum a t  say, p = p*.  At that point 

4(P*)  -= 1, 

$,(P*) = 07 

Also, in view of (4.4) 
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FIGURE 1 .  Profiles of one-dimensional (dotted line) and two-dimensional (solid line) waves 
for e = 10. 

8 .z 4 -  

0 I I 

3 6 9 12 
Phase velocity, c 

FIGURE 2. Amplitude A ws. phase speed c for one-dimensional (dotted line) and 
two-dimensional (solid line) waves. 

Therefore, if we evaluate (4.15) at p* we see that each term is non-negative. This is 
of course impossible and we are forced to conclude that $ 2 1. 

THEOREM 3. For cylindrical solitary waves with phase speeds c 2 3, $ i s  a monotonic 
non-increasing function of the distance p. 

Proof. Once again we show that the assumption that the shape is not monotonic 
non-increasing leads to a contradiction. Indeed, if it were true, then $ would have a t  
least one local minimum say a t  pl. The value of q5 at this point, say is perforce 
greater than 1 since c 2 3. And since q5+ 1 as p-+ CO, there is another point, say 
pz > p l ,  where 4 takes on the same value. Furthermore 

$(PI 2 $1 for P E  (P I ,  Pz).  
Therefore, if we evaluate (4.14) a t  both p1 and pz and subtract we see that 

which is impossible since the left-hand side is negative definite. 
The actual shape of these solitary waves is not unlike that of the one-dimensional 

one. Figure 1 ,  on which we have plotted the profiles for both the one- and two- 
dimensional waves for c = 10, shows that the amplitude of the two-dimensional wave 
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3 9 1s 
Phase velocity, c 

FIGURE 3. Plot of Zl+Z2 us. c. 

21 

is everywhere greater than that of the one-dimensional one. Figure 2 shows a 
comparison between the amplitude ws. phase speed relation for both of these waves. 
At  equal amplitude, the two-dimensional wave is slower than the one-dimensional 
one. 

5. Concluding remarks 
We have seen that the one-dimensional waves are unstable to two-dimensional 

perturbations. Most likely, this will also be the case for the two-dimensional waves 
we have discussed. Indeed, a local increase in amplitude will result in a faster local 
phase speed tearing apart the rising ‘tube’ of excess melt. It is therefore tempting to 
speculate that all the melt migration takes place by means of the three-dimensional 
waves. 
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would not have been possible. He is responsible not only for arousing our interest in 
problems of magma flows but also for formulating the questions considered here. 
Mark J. Ablowitz helped us greatly to understand how to derive the evolution 
equation in the stability analysis. Finally, one of us (0. M. L.) would also like to thank 
both NSF Grant EAR 87-07520 and the Consejo Nacional de Investigaciones 
Cientificas y Tecnicas de la Republica Argentina for their financial support. 

Appendix 

quantities since they arise in the stability analysis 
In this Appendix we evaluate the one-dimensional version of the two conserved 

or using F as the variable of integration 

fA 
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and in view of (3 .4 ,  

= 2 t c-3);. 3c ( or in terms of c only 

A plot of I1 +I2 as a function of c for c > 3 (see figure 3), reveals that this function 
is monotonic increasing. 
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